Integrated Ceramic Membrane System for H₂ Production

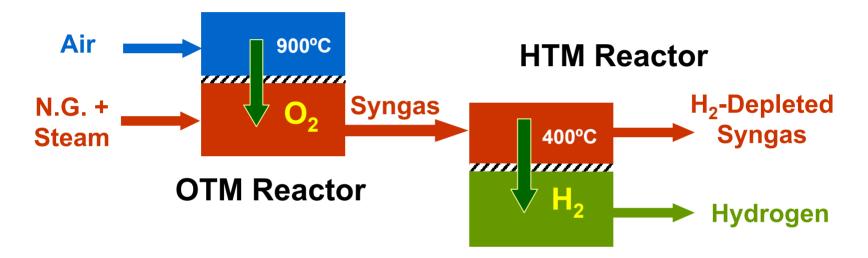
Cooperative Agreement: DE-FC36-00GO10534

Joseph Schwartz
Raymond Drnevich
Prasad Apte
Ashok Damle

Praxair - Tonawanda, NY Research Triangle Institute -Research Triangle Park, NC

DOE Annual Merit Review Meeting May 19, 2003

Praxair Hydrogen


- Only U.S. Hydrogen Supplier in All Sizes (Cylinders to Liquid to Pipelines)
 - First industry-financed liquid hydrogen facility (1959)
 - Six large LH₂ plants designed, constructed, and operated
 - Largest capacity single-train LH₂ production system (60 t/d)
 - Four LH₂ plants currently in operation
 - Smallest industrial SMR-based product line (HGS)
- Over 500 Million SCFD Capacity
- Current Distribution Network:
 - Over 600 GH₂ and LH₂ customers
 - 50 LH₂ trailers, 16 LH₂ rail cars
 - Over 250 miles of GH₂ pipeline
 - 150 GH₂ tube trailers
- First PSA H₂ Unit (Over 300 Designed and Built)

Outline - Integrated Ceramic Membrane System for H₂ Production

- Concept Review
- > Team Structure
- Relevance and Objectives
- > Approach
- Project Timeline
- Program Plan
- Accomplishments and Progress
- Responses to 2002 Questions

OTM/HTM Concept Preferred Process - Sequential Reactors

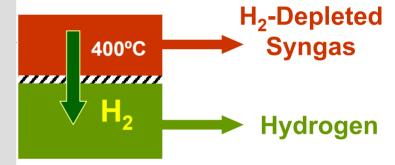
OTM Reactor

Synthesis gas generation

 $CH_4 + \frac{1}{2}O_2 \rightarrow 2H_2 + CO$

 $CH_4 + H_2O \rightarrow 3 H_2 + CO$

HTM Reactor


Water-gas shift reaction

 $CO + H_2O \rightarrow H_2 + CO_2$

Hydrogen Separation

HTM Concept Preferred Process - Sequential Reactors

HTM Reactor

HTM Reactor
Water-gas shift reaction
CO + $H_2O \rightarrow H_2 + CO_2$ Hydrogen Separation

5

Team Structure

> Praxair

- Overall Lead
- Substrate Development
- Process Economics

- Membrane Development
 - Palladium coating
- Membrane Testing

PRAXAIR

> Joint

- Membrane Production
 - Unique opportunity to integrate substrate and alloy development
 - Iterative process
- Reactor Design

Relevance and Objectives

Relevance

- Low-Cost On-Site Hydrogen Production
 - Use existing natural gas infrastructure
 - Pd layer is thin small component of overall cost
- High Thermal Efficiency
- Transportation & Industrial Markets
 - 1000 5000 scfh
- Low-Cost Hydrogen Separation and Purification

Phase IIA Objectives

- Develop Cost-Effective Hydrogen Membrane
 - Supported Pd alloy
 - Syngas tolerance
 - Single-tube testing
- Review Phase I Technoeconomic Study

Program Approach

Phase I

- Technoeconomic Feasibility Study
- Define Development Program

Phase II

- A Develop and Test HTM Alloy and Substrate
- B Integrate HTM and WGS in Single Tube Tests

Phase III

- Pilot Scale Demonstration
- Define Mass Production Methods

Program Timeline

	7/00 - 2/02	2	2/03-2/05		3/05-12/06					
Phase I		Phase II		Phase III						
	1	2	3 4	5	6	7	89)		

- Phase I Feasibility
 - 1 Selected Two-Stage Process with Pd Membrane
 - 2 Assessed Economics Vs. Current Options
- Phase II Hydrogen Membrane Development
 - 3 Select Alloy and Substrate
 - 4 Membrane Production and Testing
 - 5 Verify Reactor Performance and Update Process Economics
- Phase III System Design and Testing
 - 6 Design (DFMA Focus) and Fabricate Multi-Tube Pilot Unit
 - 7 Operate Pilot Unit
 - 8 Verify System Performance and Update Process Economics
 - 9 Develop Commercial Offering

Phase IIA Plan

> Select Substrate

- Strength, Thermal Expansion Match
- Metal or Ceramic

Select Alloy

Flux, Life, Cycling, Contaminant Resistance (S, CO, ...)

Membrane Testing

Confirm Performance in Simulated Syngas Environment

Process Economics

Confirm Membrane is Cost-Effective

Phase IIB and Phase III Plan

Phase IIA Tasks

> Schedule

- Start: Kickoff Meeting February 2003
- End: February 2004
- Task 1 Update Literature Review
- > Task 2 Substrate Development
- > Task 3 Membrane Development
- Task 4 Membrane Tube Testing
- Task 5 Process Economics
- Task 6 Program Management

Phase IIA Schedule

Task	Description	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
1	Update Literature Review												
2	Substrate Development												
3	HTM Development												
4	Membrane Tubes												
5	Process Economics												
6	Program Management												

- > Task 1 Complete
- > Tasks 2, 3, and 4 Underway
- Task 5 Later

Phase I Review

Defined Optimum Process

- Two-stage process with OTM followed by HTM
 - Pd membrane over ceramic proton conductor
 - Higher flux
 - Lower capital cost smaller high T reactor
 - Higher energy efficiency
 - Shorter development time
 - Better reliability
 - Lower technical risk

Technoeconomic Analysis

 Low hydrogen cost gives this process the potential to be a preferred approach compared to other small-scale methods

Accomplishments and Progress

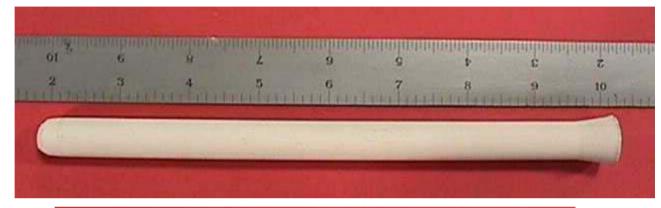
Phase IIA

- Substrates Discovered with Suitable Thermal Expansion
 - Pd CTE = 11.9 ppm
 - CGO CTE = 12.5 ppm
 - YSZ CTE = 10 ppm
- Alloys Identified
 - Pd-Cu, Pd-Ag, Pd-Au
- Substrate Tubes Produced and Coated Starting in March

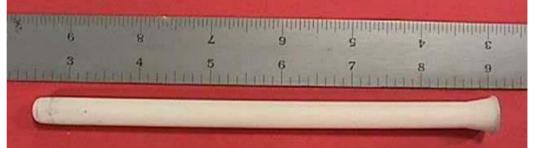
> Progress

- Program is On Schedule
- Membrane Fabrication and Testing Underway

Porous Tube Production


Tubes Made by Isostatic Pressing

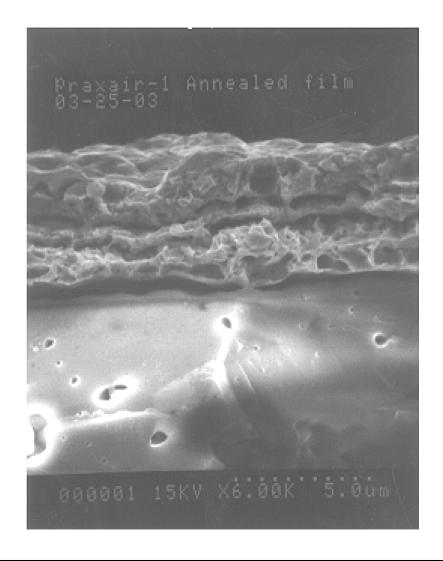
Isopressing Mold and Mandrel



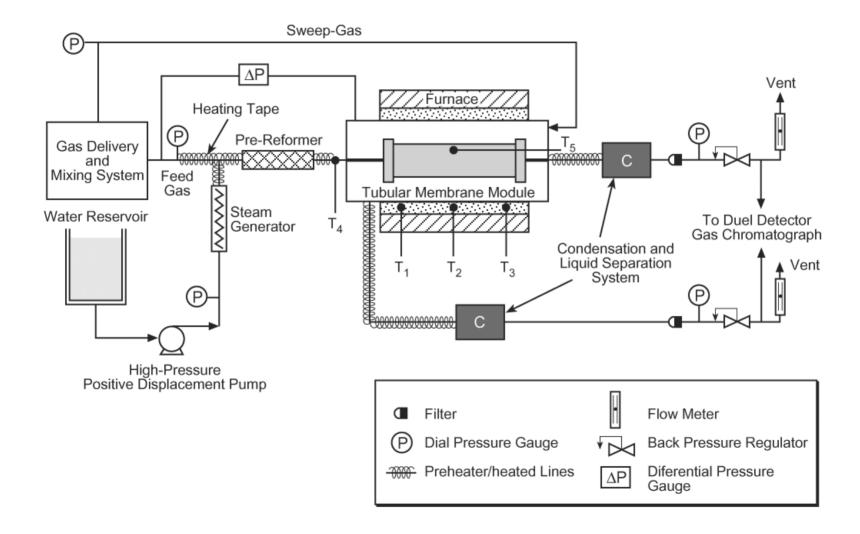
Porous Tube Production

Green

Sintered


Sintering causes shrinkage of about 20%

Tube Coating


Coated Tube

- Pd film is about 4 μm
- Surface roughness led to holes in the film
- Substrate needs to be smoother and more consistent
- Pore size needs to be reduced

Test Apparatus

2002 Questions

Panel's Main Concern was Lack of an Experimental Program

- Focus of Phase I was technoeconomic evaluation and process definition
- Focus of Phase II is membrane development and experimental validation - Began in 2003
- Information about experimental program presented

Communication and Cooperation with Others

- RTI is an essential team member
 - No contract in place last year could not discuss
- Results presented in upcoming DOE reports
- Will present external paper(s) when we have test results

Integrated Ceramic Membrane System for H₂ Production

Cooperative Agreement: DE-FC36-00GO10534

Questions?

DOE Annual Merit Review Meeting May 19, 2003

